
VBu�on: Practical A�estation of User-driven Operations in
Mobile Apps

Wenhao Li 1,2, Shiyu Luo 1,2, Zhichuang Sun 3, Yubin Xia 1,2, Long Lu 3, Haibo Chen 1,2,
Binyu Zang 1, Haibing Guan 2

1. Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University
2. Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University

3. Northeastern University
{liwenhaosuper,luoshiyu,xiayubin,haibochen,byzang,hbguan}@sjtu.edu.cn, {z.sun,l.lu}@northeastern.edu

ABSTRACT

More and more malicious apps and mobile rootkits are found to

perform sensitive operations on behalf of legitimate users without

their awareness. Malware does so by either forging user inputs

or tricking users into making unintended requests to online ser-

vice providers. Such malware is hard to detect and generates large

revenues for cybercriminals, which is often used for committing

ad/click frauds, faking reviews/ratings, promoting people or busi-

ness on social networks, etc.

We �nd that this class of malware is possible due to the lack

of practical and robust means for service providers to verify the

authenticity of user-driven operations (i.e., operations supposed to

be performed, or explicitly con�rmed, by a user, such as posting a

tweet or requesting a money transfer). We design and build the

VButton system to �ll this void. Our system introduces a class

of attestation-enabled app UI widgets (called VButton UI). Devel-

opers can easily integrate VButton UI in their apps to allow ser-

vice providers to verify that a user-driven operation triggered by

a VButton UI is indeed initiated and intended by a real user. Our

system contains an on-device Manager, and a server-side Veri�er.

Leveraging ARM TrustZone, our system can attest operation au-

thenticity even in the presence of a compromised OS. We have im-

plemented the VButton system on an ARM development board as

well as a commercial o�-the-shelf smartphone. The evaluation re-

sults show that the system incurs negligible overhead.

CCS CONCEPTS

• Security and privacy→Mobile platform security;

KEYWORDS

Mobile platform, TrustZone, User-driven security, Attestation

ACM Reference Format:

Wenhao Li 1, 2, Shiyu Luo 1, 2, Zhichuang Sun 3, Yubin Xia 1, 2, Long Lu 3,

Haibo Chen 1, 2, Binyu Zang 1, Haibing Guan 2 . 2018. VButton: Practical

Attestation of User-driven Operations in Mobile Apps. In Proceedings of

MobiSys’18. ACM, New York, NY, USA, 13 pages. https://doi.org/10.475/

XXXX

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).

MobiSys’18, June 10–15, 2018, Munich, Germany

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5720-3.
https://doi.org/10.475/XXXX

1 INTRODUCTION

Mobile malware, especially those controlling the OS, e.g., rootk-

its, can issue requests, or perform actions on users’ behalf with-

out users’ awareness. In fact, user-impersonating malware provide

an e�ective means for cyber criminals to commit various kinds of

fraud, including fake ad clicks, ticket scalping, voter fraud, fake

reviews, etc [17, 19, 32].

Leveraging legitimate user identities and hiding within real user

devices, such malware and their forged requests are very di�cult

for service providers to detect. A recent article [5] reported a click-

farm in China that employs more than 10,000 smartphones to au-

tomatically forge user activities, including rating products, follow-

ing accounts and sending ‘likes’ on websites. It was reported that

“Companies pay tens of thousands of pounds to get their products

as many likes as possible.” [5].

Motivated by the surge of user-impersonating malware, we aim

at addressing its root cause— the lack of methods for online ser-

vice providers to reliably verify the authenticity of user-driven op-

erations originated from mobile devices. We identify two require-

ments that an “authentic user-driven operation” has to meet:

• R1. User Initiation. The operation is initiated by a human

(e.g., via a button touch/click), as opposed to by an auto-

matic agent, such as malware.

• R2. User Intention. The user intends to initiate the opera-

tion and understands its meaning, rather than being tricked.

In practice, R2 is hard to ensure in a technical way. A more

realistic description of R2 could be: “The user is shown correct in-

formation to initiate the operation and con�rm in an explicit way”.

Due to the lack of methods for reliably verifying R1 and R2,

online service providers nowadays can only resort to a handful of

techniques to approximately infer if R1 and R2 are met for a given

operation request.

CAPTCHA is the most commonly-used technique to tell bots

apart from human users. Despite its negative useability impact,

which keeps growing as new attacks emerge [39], CAPTCHA only

indicates human presence—it is not meant for directly proving user

initiation or intention, e.g., a user can still be tricked into solving

a CAPTCHA while not understanding the real operation to be per-

formed. Alternatively, two factor authentication schemes such as

one-time SMS code has become increasingly popular on mobile

devices not only for user authentication but also for seeking user

con�rmation on certain operations. However, this method is in-

e�ective against powerful user-impersonating malware which are

https://doi.org/10.475/XXXX
https://doi.org/10.475/XXXX
https://doi.org/10.475/XXXX

often rootkits and can easily read or intercept authentication codes

sent via SMS, email, push noti�cation, etc.

In this paper, we propose the VButton system which allows mo-

bile app developers or service providers to attest the authenticity

of a user-driven operation from an untrusted mobile device to ver-

ify if the operation is indeed initiated and intended by a human

user (i.e., attesting R1 and R2).

To app developers, VButton is a class of customizable UI wid-

gets for users to initiate/perform sensitive operations that need to

be attested by a remote party. We provide helper APIs and libraries

which allow developers to use VButton in the same way as they

use regular UI widgets. We design two particular types of VBut-

ton UI, resembling a Button and a View, that respectively corre-

spond to two attestation modes: Explicit Attestation and In-situ At-

testation. The Explicit Attestation mode is suitable for operations

whose complete semantics need a larger and separate UI area to

be displayed (e.g., a View that shows the content of an email be-

fore sending). The In-situ Attestation mode applies to semantically

simple operations whose meaning can be fully conveyed by their

trigger UI, e.g., a Button in a Twitter app that says “Follow User

X”. In both cases, the VButton UI and the operation semantics are

generated and displayed in a secure fashion without relying on the

(untrusted) app or the OS.

The underlying attestation mechanism is split into two parts

which are provided by the two components of our system: the

VButtonManager and the VButton Veri�er. First, the VButtonMan-

ager is responsible for on-device system support. Running inside

the ARM TrustZone, i.e., the TCB (Trusted Computing Base), the

Manager renders the VButton UI, monitors relevant hardware events,

e.g., screen touches within VButton UI regions, and generates and

signs attestation blobs. Second, the VButton Veri�er is the compo-

nent deployed on server-side or veri�er-side. It generates VButton

UI upon request for either in-situ or explicit attestation. Such UIs

are sent as signed images back to requesting apps, and then passed

to the Manager for display. The Manager records any user action

on VButton UI and sends the event, along with semantics and con-

text data, to the Veri�er for attestation.

A successful attestation con�rms: (1) the operation is initiated

by a human user, (2) the request comes from an enrolled device, and

(3) the request matches captured user intention. As a result, both

R1 and R2 are met. VButton does not place any trust on either

the mobile operating system or applications. This is necessary to

defend against rootkits, and reduces the TCB down to the code

running in the TrustZone.

In designing and building the VButton system, we solved three

major technical challenges: (1) de�ning generic, easy-to-use UI and

system primitives for the proposed attestation; (2) designing the

systemmechanism without trusting the OS or apps while minimiz-

ing the trusted codebase; (3) limiting or avoiding additional user

interaction.

In summary, this paper makes the following contributions:

• A method and its system-level mechanism, called VButton,

that enables a server to attest the authenticity of user-driven

operations.

• A design and implementation of VButton leveraging ARM

TrustZone which achieves satisfactory performance in prac-

tice, and security against powerful malware, e.g., rookits

and compromised OS.

• A set of well-de�ned and easy-to-use APIs for developing

VButton-enabled applications as well as application servers.

• A case study where VButton is applied to popular apps to

defend against real attacks.

The rest of this paper is organized as follows. Section 2 describes

themotivation and our threatmodel. Section 3 describes twomodes

of our design: the explicit attestation mode and in-situ preview

mode. Section 4 details the implementation of VButton. Section 5

and Section 6 present the evaluation of our system on both secu-

rity and performance followed by a discussion on various issues

in Section 7. We then present analysis of related work in Section 8.

Finally, Section 9 concludes this paper.

2 MOTIVATION AND THREAT MODEL

2.1 Motivation

For online service providers, it is critical, yet currently impossi-

ble, to reliably verify if requests coming from (untrusted) mobile

devices are authentic and not the result of malware or deceived

users. Consequently, fraudulent requests often cause remarkable

damage to service providers while bringing considerable revenue

to attackers. For example, fraudsters, paid to promote given twitter

accounts, employ malware to compromise mobile devices of legit-

imate users and stealthily follow promoted accounts on behalf of

victim users. Such attacks led to increased questions like “I found

myself following users I don’t recognize?”, to which Twitter re-

sponds “scan your devices for spyware/malware” [40].

There are generally two types of unauthentic requests: forged

requests from bots and unintended requests from misled users, as

listed in Table 1. Request-forging bots take full control of user de-

vices and issue requests without users’ permission or knowledge.

When controlling user devices is impossible, attackers try to mis-

lead or trick users into performing unintended actions, e.g., paying

a wrong person, via UI hijacks or manipulation.

Facing the lack of e�ective and robust methods for verifying the

authenticity of user-driven operations, service providers in prac-

tice resort to the following techniques to mitigate unauthentic re-

quests by bots or misled users with limited success. Figure 1 shows

a comparison of these methods in terms of their accuracy and user

involvement.

CAPTCHA: Asking users to solve hard-for-computer yet easy-

for-human problems, CAPTCHA aims to tell apart bots from hu-

mans. However, CAPTCHA is not reliable and often evaded. Re-

cently, Google has cracked its own CAPTCHA mechanism [22]

with 99.8% accuracy. Further, CAPTCHA is not designed to verify

user initiation or intention, but user presence.

User Authentication: After receiving sensitive operation re-

quests, e.g., changing passwords, placing orders, etc., some ser-

vice providers require users to re-authenticate themselves via pass-

words or multi-factor means. However, repeated authentications

or logins a�ect user experience, and, more importantly, o�er lit-

tle help with verifying users’ intent or checking for the presence

of compromised or deceptive client apps. Moreover, some of these

2

Table 1: Types of malicious requests.

Attack Types Description Possible Attacks Mitigation in Practice

Malware (Bot)
The attacker gets full control over the victim’s de-

vice, and operates on behalf of the device owner.

Unaware payment, following unknown

twitter ID, Botnet for SPAM, etc.

PIN code, Fingerprint, CAPTCHA,

Multi-factor authentication.

Misleading Users

The attacker gets partial control of the victim’s

device, e.g., can display some fake icon but can-

not fake user input, and lures the owner to do un-

intended operations.

Payment cheating, Facebook “like” hijack-

ing, Tweetbomb, Hidden UI element.

Server-side anomaly/fraud detec-

tion.

Heavyweight to userLightweight to user

Low
Accuracy

High
Accuracy

VButton

Anomaly detection

2-Device Authentication

CAPTCHA

SMS-based OTP

Fingerprint

PIN

Figure 1: Comparison based on two dimensions: One is user

friendliness, and the other is accuracy (both false positive

and false negative).

techniques, such as SMS-based one-time-passwords (OTP), can be

bypassed by user-impersonating malware, which have access to

users’ SMS database or push noti�cation history.

Anomaly/Fraud Detection: Server-side anomaly or fraud de-

tections, especially those using machine learning [26, 28], are use-

ful for identifying fake or harmful inputs on the client side. How-

ever, the accuracy of such methods heavily depends on the model

and training data, and may vary signi�cantly across di�erent sce-

narios. Even if some anomaly is detected, in order to reduce false

positives, the server usually falls back to other traditional methods

like CAPTCHA.

Despite the mitigations discussed above, a practical, accurate

(low false positive and low false negative), and trustworthy tech-

nique is needed for online service providers to attest the authentic-

ity of user-driven operations/requests originated from untrusted

mobile devices.

2.2 Background: ARM TrustZone

TrustZone is a security extension in ARM SoCs (Systems on Chip)

�rst introduced in ARMv6 [12]. It o�ers a hardware-backed trusted

execution environment (TEE), referred to as the Secure World, for

running security-critical code. The regular software stack, includ-

ing the OS and apps, runs in a parallel and less-privileged environ-

ment called the Normal World. Figure 2 shows a typical architec-

ture of TrustZone.

Application

TEE
Driver

Secure
Input
Driver

Trust Application

Display
Device

Input
Device

Network,
Disk, etc.

Display
Driver

Normal World Secure World

U
s
e
r

K
e
rn

e
l

H
a
rd

w
a
re

Secure
Display
Driver T

E
E

Input
Driver

Other
Drivers

Input
Device

Display
DeviceMemory

Partitioned to either world

Figure 2: Hardware and software components of TrustZone.

The memory is split into Secure World and Normal World,

as well as the I/O devices.

Strong isolation: TrustZone-enforced isolation applies to hard-

ware resources including processors, memory, and peripherals. The

allocation or assignment of the resources can be dynamically con-

�gured by the Secure World OS (or TEE OS). When a processor is

running in the Normal World, it can only access the Normal World

memory. In contrast, when running in the Secure World, a proces-

sor can access all memory. A peripheral can be assigned to either

the Secure World or the Normal World. For instance, the TEE OS

can assign the touchscreen to the Secure World while handling

PIN input, and otherwise keep it in the Normal World. Some de-

vices are always assigned to the Secure World, like �ngerprint and

iris scanners, while some devices whose drivers are too complex to

run in the Secure World are always assigned to the Normal World,

like network and storage.

Secure boot: When a phone boots, the processor �rst enters

the Secure World and loads the signed TEE image to memory if

the signature is valid and the image unmodi�ed. Once the TEE

OS is loaded with its security enforcement mechanisms initialized,

it switches the processor to the Normal World to start the boot

chain in the Normal World. As a result, the integrity of TEE OS

is guaranteed and the isolation between the two worlds is set up

before any untrusted code is loaded.

Remote veri�cation: TrustZone allows a remote party to check

whether a mobile device has deployed TEE and verify its secure

3

boot chain. This veri�cation relies on per-device private keys in-

stalled during device manufacturing. These keys are only accessi-

ble in the Secure World. Device vendors keep the corresponding

public keys. The provisioned keys can also be used for other forms

of remote attestation which can bemore easily developed now that

ARM has established the Open Trust Protocol (OTrP) Alliance [15].

2.3 Threat Model

We assume that attackers could take full control over the Normal

World, including the applications and the OS, but not the Secure

World. Attackers’ goal is to send requests or perform operations on

behalf of users, via either user-impersonating malware or user de-

ceptions. For example, a tainted Twitter app can automatically fol-

low many twitter accounts without a user’s permission or aware-

ness. Similarly, a compromised PayPal app can stealthily request

money transfers out of the user’s account or redirect a user-initiated

transfer to an unintended receiver.

We rely on the TEE as our TCB. Therefore, we do not consider

attacks that may breach TrustZone isolation, including side chan-

nel attacks. Meanwhile, we assume users are benign and willing to

use our system to prevent themselves from being impersonated or

tricked by attackers.

3 DESIGN

Wepresent the design of the VButton system, including the developer-

facing interfaces, the TrustZone-based VButton Manager, and the

server-side VButton Veri�er. Developers can easily integrate VBut-

ton UI into their apps and in turn allow �rst- or third-party service

providers to verify the following properties with regard to a sensi-

tive user-driven operation or request:

• R1. User Initiation: The operation is initiated by a human

user via an explicit action.

• R2. User Intention: The user intends to initiate the opera-

tion, rather than being tricked to do so.

3.1 Overview and Challenges

Intuition: The high-level idea behind VButton is as follows. Hav-

ing strong incentives to prevent user deception and impersonation,

online service providers and their �rst- or third-party app devel-

opers are the intended adopters of the VButton system. Such app

developers use the VButton SDK to easily integrate VButton UI

widgets, e.g., Button and View, in their apps. Virtually identical

to normal UI objects, VButton UI widgets are used for app users

to initiate critical user-driven operations including login and pur-

chasing. Unlike normal appUI, thesewidgets are directly displayed

andmonitored by the VButtonManager in TEE, as opposed to their

hosting apps or the underlying OS. This design ensures that attack-

ers cannot modify, obscure, or trigger any VButton UI when being

displayed. As a result, user initiations (R1) performed via VButton

UI can be reliably and accurately recorded.

In this context, verifying user intention (R2) for an operation

entails solving two problems: (1) showing the information of the

initiated operations to the user; (2) ensuring the user is aware of the

information. To solve the �rst problem without having to heuristi-

cally infer operation semantics, we let VButton UI fully and explic-

itly express operation semantics. To do so while keeping our sys-

tem operation-agnostic, the VButton Veri�er helps service providers

dynamically generate VButton UI widgets to be displayed in apps.

We solve the second problem by designing two types of VButton UI

that require user’s explicit interaction, at the same time supporting

a wide range of operations. For example, a VButton UI for follow-

ing a user in a Twitter app is rendered by a remote Twitter server

upon the request of the VButton SDK in the app, which then passes

this UI to the VButton Manager for display. Now the veri�cation

of R2 becomes a simple comparison between the apperance of the

server-generated UI and the UI captured on the client device.

System Overview: At the core of the VButton system is the VBut-

ton Manager which runs in TEE. It securely displays all VButton

UI for apps, monitors user input events on these UI, and generates

a signed attestation after a VButton UI is triggered. On the server

side resides the VButton Veri�er. For each user-driven operation, it

generates the VButton UI on demand to be displayed in the client

app, and after the UI is triggered it veri�es the attestation blob sent

from the client app alongside the operation request. Our system

also includes the VButton SDK which app developers use to adopt

VButton UI widgets in their apps. The SDK hides the attestation-

related logic from developers including requesting the VButton UI

from the Veri�er, passing the UI to the Manager for display and

monitoring, and after the UI is triggered, obtaining the attestation

blob from the Manager and sending it to the Veri�er along with

the operation request.

Our system supports two attestation modes, Explicit Attestation

and In-situ Attestation which app developers can choose. The Ex-

plicit Attestation mode is suitable for semantically complex oper-

ations whose meanings cannot be fully expressed by a simple UI,

such as a button. In cases like transferring X amount of money

from A to B on certain date, our system uses an operation preview

as the VButton UI, which presents the operation semantics to the

user for con�rmation. The In-situ Attestationmode is designed for

simple operations whose semantics can be expressed in a small UI

object, e.g., following user X . In this mode the VButton UI looks

like a standard button that blends into the rest of the app’s UI. No

explicit preview or con�rmation is needed. A touch/click on the

button alone is enough for our system to capture user initiation

and true intention.

The design of VButton overcomes the following challenges:

• Untrusted apps and OS: The VButton Manager needs as-

sistance from apps, e.g., to trigger the display of preview,

and relies on the OS for certain operations like network I/O.

However, both the app and OS may be compromised, and

may send fake data to the VButton Manager. Thus, our de-

sign must be robust against possible evasions or manipula-

tions.

• Minimal and generic support in TEE: The code running

in TEE (i.e., our TCB) should be as small as possible while

4

Request Attestation

Check

Twitter Server Side

Following @ Twitter

Mobile Phone Side

7

3

8

Generated preview

Generate
attestation

Generate
preview
image

The preview screen is
displayed by TrustZone

CancelOK

3

Following @Twitter

CancelOK

Follow

1

Following @ Twitter

Request

6
9

2

4

Attestation

5

Manager (i!"#$%"&%'()%"*+),-. Attester

Figure 3: Performing the “follow” operation in a Twitter app that uses the explicit attestation mode of VButton.

maintaining generic support for all apps (as opposed to be-

ing app-speci�c or operation-speci�c). This requires VBut-

ton Manager to be small in size and independent of app se-

mantics and functionality.

• Ease of use for developers and users: VButton’s impact

on app development and app usability should be minimal.

The system cannot require a large e�ort from app devel-

opers or service providers for adoption. Similarly, it should

avoid imposing burdens to app users.

3.2 Mode-1: Explicit Attestation

In the explicit attestationmode, a previewwill be shown to the user

for con�rmation once a VButton is clicked. We use the “follow”

operation in a Twitter app as an example to explain the explicit

attestation mode. The process is shown in Figure 3.

Attestation Flow: As the �gure shows, when a user touches

the “follow” button (Step- 1©), the app sends a request for the VBut-

ton UI to the Twitter server (Step- 2©). The server then generates a

preview that captures the semantics of the operation (Step- 3©) and

sends the signed preview image to the app (Step- 4©). The app for-

wards the preview to the VButton Manager, which displays it and

collects user response, either con�rming or dismissing the preview

(Step- 5©). If the user con�rms it by touching the “OK” button (Step-

6©), the VButtonManager in TEE receives the touch event and then

generates an attestation that contains the hash of the preview, the

timestamp, and a nonce (Step- 7©). The attestation is signed with

the per-device private key before it is sent to the Twitter server

along with the request to follow the intended user (Step- 8©). The

server then veri�es the attestation using the device public key and

checks the hash value (Step- 9©) to determine if the user saw the

exact preview that was generated for this operation by the server.

Since the preview is generated by the server, VButton does not

need to understand the operation semantics. In fact, regardless of

what a to-be-attested operation is, our system goes through the

same steps to verify the authenticity of the operation, i.e., VButton

Table 2: The �elds of an attestation blob.

Field Description

hash The hash value of the preview image.

nonce A random number generated by the server.

taware Interval between displaying preview and pressing “OK”.

siдnature A signature of the above contents signed by TEE.

veri�es R1 and R2 in a general, operation-agnostic way. This de-

sign signi�cantly reduces the complexity of the attestation while

supporting a wide range of user-driven operations.

Leveraging the privileged TEE, the VButton Manager ensures

that the preview, when shown on the screen, cannot be obscured

or modi�ed by apps or even the OS. Similarly, only physical touch

events (as opposed to software-generated ones) that fall inside the

preview region are captured as user responses. The VButton Man-

ager enforces these restrictions by assigning the touchscreen de-

vice to the SecureWorld during the periodwhen the preview needs

to be shown. This gives theManager exclusive permissions to draw

on the screen and receive (unforgeable) touch events for the dura-

tion of the preview.

The �elds in an attestation blob are shown in Table 2. taware

is the time interval from the moment the preview is shown to the

moment the user responds. It allows service providers to set a min-

imum time span for users to read the preview.

Multi-page Preview: In some cases a single preview is not big

enough to show the entire semantics of an operation, e.g., a rela-

tively long email to be sent. We extend the preview to support mul-

tiple pages/screens, as shown in Figure 4. In this example, when the

user is sending an email, she is presented a preview of two pages.

The Veri�er generates both pages which are displayed by the Man-

ager. The Manager captures each preview page individually and

attests user input to each page.

5

receiver@gmail.com

from me@gmail.com

Hi, let’s meet at 9am tomorrow in the lobby.

The bus will leave at 9:10 am. Please check

out in advance. See you around!

Tom

receiver@gmail.com

from me@gmail.com

Hello

Hi, let’s meet at 9am tomorrow

CancelOK

1 of 2

receiver@gmail.com

from me@gmail.com

Hi, let’s meet at 9am tomorrow in the lobby.

The bus will leave at 9:10 am. Please check

out in advance. See you around!

Tom

at 9:10 am. Please check out in

advance. See you around!

Tom

CancelOK

2 of 2

Figure 4: Multi-page preview when sending email using

VButton.

3.3 Mode-2: In-situ Attestation

The explicit attestation mode described above is a general design

that can be used for all types of operations. However, it requires the

user to go through an additional con�rmation of a to-be-attested

operation, i.e., responding to the VButton preview, which can de-

grade user experience if happens too frequently.

We design an alternative mode, called In-situ Attestation, to en-

able user-transparent attestation without sacri�cing security. The

design is inspired by our observation that, for many types of opera-

tions, an explicit or separate preview is not needed for presenting

operation semantics to users and capturing their intent. In cases

like user login and twitter following, we can simply embed the

preview in the original button that users need to trigger anyways

when performing those operations, i.e., no additional preview or

con�rmation is needed.

Attestation

capture from screen

to server

Follow @Twitter
Follow @Twitter

Figure 5: In-situ attestation mode: embedding preview

within the button.

To demonstrate the in-situ attestation, we again use the “fol-

low” operation in the Twitter app as an example (Figure 5). To use

this mode, the app developer uses the corresponding VButton UI

in place of the regular follow button. The VButton UI is generated

by the service provider and fully conveys the operation semantics,

e.g., saying “Follow User X”. Unlike the explicit attestation mode,

the VButton UI in this case does not cause additional user interac-

tion and does not require user awareness. When the user touches

the button, the Manager immediately captures the on-screen im-

age of the entire VButton UI. The rest of the attestation process is

similar to that of the explicit attestation mode.

Relying on untrusted apps to display VButton UI poses two chal-

lenges to our attestation. First, the visual integrity of VButton UI

cannot be guaranteed. Second, the location and orientation of the

VButton UI may change as apps update their UI which makes it

di�cult for the Manager to locate and monitor the UI. We over-

come both challenges by having the VButton SDK automatically

update the Manager about the current on-screen location of VBut-

ton UI elements. Therefore, any compromised or absent VButton

UI is captured by the Manager and detected by the Veri�er because

the captured VButton UI is not identical to the one originally gen-

erated by the Veri�er, therefore their hashes will not match. The

SDK will also enable the button only when it is fully shown to the

user, to ensure that the Manager will get the full image.

Application

Input
Queue

TEE
Driver

Secure
Input
Driver

Secure Attester

Input
Device

Framebuffer Framebuffer
Network,
Disk, etc.

Display
Driver

Normal World Secure World

U
s
e
r

K
e
rn

e
l

H
a
rd

w
a
re

1

2 3
4

mapped

T
E
E

Secure
Display
Driver

Figure 6: The in-situ preview mode of VButton.

Figure 6 shows the assignment of devices and data �ow of the in-

situ mode. When an application requires attestation (Step- 1©), the

Attester will keep monitoring all the inputs (Step- 2© and capturing

screen (Step- 3©). Once user con�rms, the Attester will generate at-

testation and send it to the application (Step- 4©).

Themost signi�cant di�erence between the in-situmode and ex-

plicit attestation mode is that the VButton UI has to be displayed

by the (untrusted) hosting app, rather than the Manager in TEE.

This is because when the Manager draws on the screen, i.e., screen

is assigned to the Secure World, the app and the OS in the Nor-

mal World can no longer update the on-screen content. This iso-

lation is desirable in the explicit attestation mode where the pre-

view is shown in the foreground while the app UI remains frozen

in the background. However, this isolation, and the resulting app

UI freeze, can disturb app functionality in the in-situ attestation

mode where the app UI needs to be active.

Note that although the screen is shared between the Normal

World and the Secure World, hardware interrupts from the screen

(e.g., touch events) still go through the Manager in the TEE �rst

and cannot be forged or tampered with by untrusted code.

Special Considerations: Figure 7 shows the timeline of an in-

situ attestation. When the “Follow” button appears on the screen,

the VButton SDK immediately informs the Manager of the loca-

tion and size of the button. The Manager then starts to monitor

6

Showing

VButton

!aware

App

Manager

Update VButton

Location

Scrolling Press VButton

Start to

monitor input

Capture

VButton

Image

time

Stop showing

VButton

Stop

monitoring input

taware

C1 C2 C3

Figure 7: The timeline of an in-situ attestation.

all input events (C1 in the �gure), and capture images of the but-

ton at random intervals for verifying visual consistency and de-

tecting TOCTTOU attacks (C2 in the �gure). When a touch event

happens within the button area, the Manager captures the button

image again (C3 in the �gure), and checks if all captured images are

identical, i.e., the user sees the same button for the entire taware

duration. Thus, if the VButton SDK lies about the location of the

button, the Manager will compute di�erences in snapshot images

and detect such an attack.

In this mode the VButton UI may move around or even tem-

porarily be rendered o� the screen, the taware value is calculated

as the sum of the time periods when the UI is visible since its �rst

appearance. The taware should be larger than the threshold set by

the server.

3.4 VButton API

The VButton SDK provides a set of API for applications to use. List-

ing 1 and Listing 2 demonstrate how applications may use those

APIs to attest the user-driven operation of tapping the Twitter fol-

low button.

Explicit attestation: In Listing 1, Line 3 establishes a secure

connection with the Manager in the TEE. Line 4 renders and in-

stantiates the follow button which is a VButton. When the button

is pressed, Line 10 requests an operation preview from the remote

Veri�er. Line 12 feeds the preview image, together with the con�gu-

ration, to the Manager in the TEE. The Manager then displays the

preview over the regular app UI and monitors user input. When

the user con�rms or dismisses the preview, the Manager returns

the screen control back to the Normal World and sends the veri�-

cation result, including the attestation blob, to the appropriate app

callback (Line 14 and 19).

In-situ attestation: In Listing 2, unlike in explicit mode, the fol-

low button is the VButton UI and is composed by the remote server

upon the app’s request during the initialization phase (Lines 3-4).

Line 6 informs the Manager of the button as a monitored region

, Lines 7 to 13 update the VButton location as the app UI layout

changes. Lines 14 to 31 show the in-situ attestation process trig-

gered by a user click on the button. The app does little more than

invoke the in-situ attestation API (Line 18) which takes care of the

visual consistency check, user input con�rmation, attestation blob

generation, etc.

Table 3 lists all the APIs exposed by the SDK that are relevant

to either attestation mode.

Listing 1: Sample API use for Explicit Attestation mode.

1 import org.VButton .*;

2 ...

3 VButton .init ();

4 Button followBtn = (Button)findViewById(R.id.button);

5 followBtn .setOnClickListener (new View.OnClickListener () {

6 // Called when user clicks the FOLLOW button

7 @Override

8 public void onClick (View view) {

9 // Request explicit attestation image from server

10 Bitmap bmp = getPreviewFrame ();

11 // Invoke VButton Manager to display and monitor

the preview UI

12 VButton .UIAttester_attest_explicit (bmp ,

preview_config , VButtonCallback <VerifyResult

>() {

13 @Override

14 public void onSuccess (VerifyResult r) {

15 // Called when attestation is generated

16 sendFollow("follow", verifyResult);

17 }

18 @Override

19 public void onCancel (VButtonException e) {

20 Log.d(TAG , "User cancels follow operation !");

21 }

22 });

23 }

24 });

Listing 2: Sample API use for in-situ attestation mode.

1 import org.VButton .*;

2 ...

3 VButton .init ();

4 Button followBtn = (Button)findViewById(R.id.button);

5 // Register the in -situ preview region

6 VButton .UIAttester_register_insitu_view (followBtn ,

preview_config);

7 followBtn .addOnLayoutChangeListener (new

OnLayoutChangeListener (){

8 @Override

9 public void onLayoutChange(View v,int left ,int top ,int

right ,int bottom ,...) {

10 // Update the in-situ preview region

11 VButton .UIAttester_update_insitu_view (v,

preview_config);

12 }

13 });

14 followBtn .setOnClickListener (new View.OnClickListener () {

15 @Override

16 public void onClick (View view) {

17 // Invoke VButton in-situ preview to verify

18 VButton .UIAttester_attest_insitu_preview (view ,

VButtonCallback <VerifyResult >() {

19 @Override

20 public void onSuccess (VerifyResult r) {

21 // Called when attestation is generated

22 sendFollow("follow", verifyResult);

23 }

24 @Override

25 public void onError (VButtonException e) {

26 // Handle error

27 Log.d(TAG , "follow_button: verify failed!");

28 }

29 });

30 }

31 });

7

Table 3: APIs provided by VButton Manager to untrusted OS.

Command and Parameters Description

UIAttester_init() Establish a secure connection with the Manager.

UIAttester_final() Release an established connection with the Manager.

UIAttester_register_insitu_view(view_info, track_config) Register a new in-situ button with the Manager. view_info in-

cludes view ID, button location etc. track_config is the con�gu-

ration parameters de�ned by the server, including nonce and min-

imal taware .

UIAttester_update_insitu_view(view_info) Update the Manager with the new location of an in-situ button.

UIAttester_unregister_insitu_view(view_info) Ask the Manager to stop monitoring an in-situ button.

UIAttester_attest_insitu_preview(view_info) Ask the Manager to attest a registered in-situ button.

UIAttester_attest_explicit_preview(view_info, track_config) Ask the Manager to display the explicit preview, collect user re-

sponse, and generate attestation.

4 IMPLEMENTATION

Wehave implemented VButton on two TrustZone-enabled devices:

a Samsung Exynos 4412 development board and a commercial o�-

the-shelf smartphone, Xiaomi RedMi2A. Both are equipped with

ARM Cortex-A9 processors. On the Samsung board, the OS in the

Normal World is Android Lollipop (5.0) with Linux kernel version

3.15. On the Xiaomi smartphone, we use Android KitKat (4.4) with

Linux kernel version 3.10. We chose two di�erent OS versions and

devices to demonstrate that VButton system design is OS- and

device-independent and can be applied to both legacy and new

OS versions. The OS running in the Secure World is a commercial

TEE compatible with GlobalPlatform TEEAPI speci�cation o�ered

by TrustKernel [9]. The VButton Manager runs as a trusted appli-

cation in the TEE. Generating an attestation blob is computing-

intensive. In our initial implementation using libtomcrypt [6], the

performance is quite poor. We optimize it by implementing hard-

ware �oating point support in the TEE, and replacing the critical

part of crypto with the Google boringssl [4] library.

4.1 Key Management and Attestation Service

For every TEE-equipped device, a per-device key pair and a unique

device ID is generated and securely stored on the device during

manufacturing. The public key and the device ID are also kept in

a trusted server which can be used for various kinds of attesta-

tion. The secure on-device storage is either the efuse or the RPMB

(Replay-ProtectedMemory Block) partition of the eMMC. The efuse

storage is relatively expensive and very small in size. Our current

implementation uses the RPMB as the secure storagewhich is widely

supported by mobile device vendors.

On the server side, a signed attestation blob from a client can

be veri�ed using the corresponding device ID and public keys. To

allow third-party service providers to authenticate devices and ver-

ify attestation blobs, we implement an attestation server. It exposes

two restful attestation APIs to enrolled service providers: getNonce

and attestBlob. The getNonce API is used to create a nonce (a ran-

dom number unique to each attestation). Used with a timestamp,

the nonce prevents replay attacks. The attestBlob is used to verify

the signature and integrity of an attestation blob received from a

mobile device. The APIs follow a customized version of the Open

Trust Protocol (OTrP) [20]. Third-party service providers can use

this API to leverage VButton to attest the authenticity of user-

driven operations, without having to know or manage device IDs

or public keys.

User privacy could be a concern since the current implementa-

tion requires attestation server to maintain device IDs and public

keys which are trackable data. Our solution is to use a disposable

device alias and generate an anonymous key pair in place of per-

manent device IDs and TEE public keys. Such aliases are securely

registered with the VButton Manager on devices upon secure app

installation. The secure app will send the aliases and the generated

public keys to the server through a secure channel. The aliases are

made app-speci�c and disposed upon an app uninstallation or user

request.

4.2 Secure Display

In the explicit attestationmode, the display or screen needs to be se-

curedwhen a preview is active to prevent untrusted software in the

Normal World from in�uencing what users see. The VButton Man-

ager secures the display by con�guring the TrustZone Protection

Controller and setting the Display Controller as a secure periph-

eral, i.e., assigning the screen and the corresponding framebu�er

to be exclusively managed by the TEE.

We implement a small driver in the TEE for the secure display

controller. This driver helps the Manager draw VButton previews

on the screen in a trusted fashion. For each preview display, the dri-

ver �rst freezes the content currently displayed on the screen (e.g.,

the app UIs). It then draws the preview on top of the frozen con-

tent and noti�es the Manager which then starts capturing touch

events that fall inside the areas of the preview. All the events out-

side the area of interest will be passed to the normal world. After

the user responds to the preview, the display driver recovers the

previously frozen screen, and the Manager hands over control of

the display back to the Normal World. Note that even though the

normal world UI stops rendering during preview, the entire normal

OS and UI components are still active as usual.

In the in-situ mode, by design, the screen and the framebu�er

are managed by the Normal World OS which allows apps to up-

date their UIs as needed while the in-situ button is shown on the

screen. In this case, the secure display driver in the TEE only needs

to take snapshots of in-situ VButton UIs at random intervals which

are used by the Manager to check the visual consistency of the

8

UI. The driver is not used for drawing in this mode. Taking snap-

shots in TEE is done by directly reading the physical memory of

the framebu�er indicated by display peripheral registers.

4.3 Secure Input

In the explicit attestation mode, the touch screen peripheral is as-

signed to the TEE for the duration of a VButton preview. This is

done in a similar way to the display peripheral con�guration. Ad-

ditionally, the Inter-Integrated Circuit (I2C) peripheral connected

to the touch input is also protected and assigned to the TEE. This

is because physical touch events are received through the I2C pe-

ripheral. Directly managing the peripheral allows the Manager to

collect real user inputs while not being tricked by fake ones gener-

ated by Normal World malware. Note that there are multiple I2C

peripherals in a mobile phone, each could be connected to mul-

tiple peripherals (slaves) and each I2C could be set as secure or

non-secure device independently.

In the in-situ mode, additional input handling logic is activated

in the TEE which allows the Normal World OS to receive user in-

put events while the Manager is monitoring both the touch screen

and I2C peripheral. Without the logic, input events are consumed

by the TEE and never reach the Normal World when the periph-

erals are assigned to the TEE. We implement this logic in the se-

cure touch screen driver in the TEE. It forwards intercepted input

events to the Normal World OS by writing into the bu�er of the

Linux input subsystem.

5 SECURITY EVALUATION

In this section, we evaluate the security of VButton system. We

perform several security attacks using a set of malware to show

the e�ectiveness of VButton. To have a comprehensive evaluation,

we root our phone with a tool called KingRoot [2], making sure

that our malware could gain full control of Android OS.

The experimentswere performed on an o�-the-shelf smartphone,

Xiaomi RedMi2A, to get results in real cases. We use a computer

with Intel i7 qual-core CPU at 3.2GHz, 8GB memory and 2TB hard

disk as the server. The screen resolution of the test device is 1280X720.

5.1 Input Injection Attack

Input injection is a common technique used by user impersonation

malware to send requests on behalf of users without their aware-

ness. To simulate input injection attacks, we use themonkeyrunner

tool [7] and generate pseudo-random streams of user input events

(e.g., touches and gestures) which result in system-level UI events.

Attack in explicit attestation mode: In the explicit attesta-

tion mode, no matter what kind of input events are injected, the

VButton Manager does not respond to injected events. This is be-

cause the Manager takes input events directly from hardware in-

stead of the Android OS.

Attack in in-situ preview mode: In in-situ attestation mode,

the victim application itself does react to the injected touch events.

However, the application gets an “attestation error” when it calls

UIAttester_attest_insitu_preview to attest user operation because

from the perspective of the Manager, the monitored display region

(i.e., the VButton UI) was never touched.

Table 4: Preview load and display time.

Display Type Latency (ms)

Display by app in a separated activity 208.0

Display by another app 2062.0

Display by VButton Manager in TEE 375.6

5.2 Display Overlay Attack

We wrote an example rootkit tool called UIMon that runs in the

background and monitors all application activities. Once a victim

application is launched, it immediately shows a fake screen to the

user by writing directly to the framebu�er (/dev/graphics/fb0),

tyring to trick the user to touch the area of a VButton UI that is

currently covered by a fake button.

Attack in explicit attestation mode: In explicit attestation

mode, the fake screen is not shown to the user because the Man-

ager exclusively controls the topmost layer of the screenwhere the

VButton preview is displayed. Only after the preview exits is the

fake screen shown. But by that time, the user has already read and

responded to the preview.

Attacks in in-situ previewmode: In in-situ preview, the fake

screen is shown to the user, which may trick the user into clicking

the wrong button. However, the attestation fails because the server

fails to verify the image hash of the clicked area, i.e., the look of the

clicked button does not match that of the original button generated

by the Veri�er.

5.3 Implementation Complexity and TCB Size

VButton is designed to be generic and easy to deploy on existing

mobile software stacks. The VButton Manager in the TEE repre-

sents the TCB size we addedwhich consists of a trusted application

in user mode (about 500 lines of C code), and two secure device dri-

vers in privileged mode (about 800 lines of C code). The complex-

ity of the secure drivers are far less than Normal World drivers

because VButton only reads input data from I2C peripheral and

writes simple image data directly to the framebu�er while most of

the initialization and con�guration work are done in the Normal

World drivers. For systems that have deployed trusted UI, VBut-

ton can add less code (e.g., displaying logic) to the TCB than those

without trusted UI. In our implementation, we modi�ed about 50

lines of TEE driver code in the Normal World. The VButton SDK

contains about 600 lines of Java code and 300 lines of C code.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of VButton system.

The setup is the same as in the security evaluation. The VButton

Manager is active only when handling sensitive user-driven opera-

tions and remains dormant otherwise. For performance evaluation,

we focus on the latency overhead caused by the preview genera-

tion as well as the attestation. In practice, since the majority of the

latency is from the network, the overhead caused by VButton is

negligible.

9

Table 5: Hash calculation and preview generation cost.

Preview size
Hashing on

devices (ms)

Preview generation

on server (ms)

1*1 6 0.20

5*5 6 0.27

10*10 9 0.31

50*50 10 0.48

100*100 13 0.98

200*200 25 2.70

300*300 45 5.80

720*640 200 28.00

Table 6: Input handling latency of di�erent mode.

Input Type Duration (ms)

Original input 48.6

Preview input 27.8

In-situ input 52.2

6.1 API Performance Microbenchmarks

VButton preview loading time: The loading and display of pre-

views can introduce latency starting from the moment a preview

request is sent to the Veri�er by an application to the moment that

the preview is shown on the screen by the Manager. As a com-

parison, in addition to the latency of displaying the preview using

the TEE, we also measured the latencies of displaying the same

preview using Android in two settings: displaying in a di�erent

activity of the same application, and displaying in another applica-

tion through IPC. The evaluation result is shown in Table 4, which

indicates that the latency is relatively small.

Attestation generation time: We calculate the time to gener-

ate an attestation blob using the SHA256 hashing algorithm 2048-

bit RSA key. We average the time across 100 attestations and the

result is 56ms which is acceptable.

Preview generation and hash calculation time: In our de-

sign and implementation, the preview frame is generated on the

server side. We use a Java library called textimagegenerator [8]

which creates images from text and image based content to gener-

ate preview frames. Display hash calculation is done both server-

side and on device using the perceptual hash algorithm [27] which

is scaling-resistant and produces a hash value of 64 bits. We mea-

sured the time to generate hashes and previews using di�erent

VButton UI sizes, and summarize these measurements in Table 5.

The results show that the two operations add small latency espe-

cially compared with the network latency.

6.2 Input Handling Latency

We measure the input handling latency as the time di�erence be-

tween an input interrupt occuring and the input data being re-

ceived by the intended software. Table 6 shows the results.Original

input is the input latency of unmodi�ed Android. Preview input is

the latency between a generated secure input event and the input

being consumed by the Manager. In-situ input is the latency from

a generated input event to the input being received by the Android

application. The evaluation results in Table 6 show that the input

handling overhead incurred by putting the input device driver in

the TEE is quite small. For secure preview input, the input handling

routine in the TEE is simpler and quicker than Android’s and thus

incurs a shorter latency.

 1

 1.5

 2

 2.5

 3

 3.5

 0 100 200 300 400 500 600 700 800 900 1000 1100

S
e

rv
e

r
L

a
n

te
n

c
y
 (

m
s
)

Concurrent Connected Clients

getNonce
attestBlob

Figure 8: Latency of attestation server.

6.3 Server-side Attestation Performance

We measure the server latency by simulating 100 to 1,000 concur-

rent user requests using Apache Benchmark. As introduced in Sec-

tion 4.1, the attestation server provides two restful APIs, getNonce

and attestBlob, which are called in pairs for each attestation request.

Since the signing time is longer than veri�cation time, we use a set

of pre-signed requests for server stress tests, and disable the replay

detection in the attestation server. The preview frame generation

is replaced with a prede�ned image in getNonce API in this test.

The number of device public keys stored in the server is 100,000.

Figure 8 shows the attestation latency observed in a local network,

which is lower than usual cellular network latency and scales well

as the number of concurrent clients increases.

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 5 10 15 20 25 30 35 40

B
a

tt
e

ry
 C

a
p

ili
ty

 (
%

)

Time (minute)

VBbutton off
VBbutton on

VBbutton on and monitoring

Figure 9: Changing of battery capacity.

10

6.4 Power Consumption

Weevaluate power consumption of the VButton system under three

con�gurations of the Manager: disabled, on-in-background, and

on-and-monitoring. We create a simple, 10-minute workload that

includes: playing a video, sur�ng the Internet, playing interactive

games, and typing messages. Figure 9 shows how much battery ca-

pacity is consumed after 4 repeated workloads (40 minutes), under

the three con�gurations. Even in the worst case when the Manager

is on and constantly monitoring UI and input events, its impact

on battery is barely noticeable. In reality, VButton is invoked on

demand instead of always on. Therefore, we expect that VButton

incurs negligible battery overhead in practice.

App Facebook
SDK

Server
Agent

Facebook
Server

Attestation
Server

1. nonce
2. nonce

5. attestation
6. request

4. display
 preview

7. verify

8. send like/
share request

Mobile Side Server Side

3. preview

like/share

9. deliver

Figure 10: Facebook like & share attestation timeline.

6.5 Case Study: Facebook Like & Share Button

Online social networks such as Facebook provide like buttons and

share buttons for users to easily endorse or share webpages and

apps among their friends. While these buttons are convenient to

use, they are subject to hijacking attacks where users unknowingly

“like” or “share” unintended content. Facebook urges users to “be

cautious to avoid infecting (their) computer(s) with malware” [1].

VButton can defeat these attacks even if a users’ mobile device

is infected with malware. To demonstrate how to adopt VButton in

this case, we customize the Facebook Android SDK (only 32 lines

of changed code) and use a server agent as the Veri�er. Figure 10

shows the interactions among the app, the server agent, the Face-

book server and the attestation server. When a user clicks a but-

ton, the Facebook SDK sends a 184-byte compressed request pack-

age to the server agent, and in return, receives a 299-byte nonce

package and a 4KB compressed preview image (300 * 257 pixels)

which contains an excerpt of the content the user wants to share.

Next, the SDK feeds the preview to the VButton Manager for dis-

play. After the user responds and the attestation is generated, the

SDK sends the attestation blob to the server agent for veri�cation,

whose post body is 231-byte long (compressed). The veri�cation

process checks the origin of the request through the attestation

server and compares the hash of the preview image. The SDK even-

tually sends the “like” request to the server agent, which validates

the request and delivers it to the Facebook server. The network

communication with Facebook server generates 12KB of TLS traf-

�c.

Note that the app that uses the customized Facebook SDK does

not need to be modi�ed. Malware may tamper with the SDK, but

doing so does not help malware bypass the attestation.

7 DISCUSSION & LIMITATION

Deployability: TEE has become prevalent in mobile devices. Mo-

bile payment providers have utilized TEE to secure online and of-

�ine payment in hundreds of millions of mobile devices, including

Alipay [11], Wechat Pay [41] and Apple Pay [14]. Since Android

Nougat, Google uses TEE as a platform security foundation in An-

droid [3] and has mandated all Android vendors to support TEE

in their systems in order to pass the Android Compatibility Test

Suite (CTS). In the meantime, more and more TEE vendors support

OTrP for dynamic trusted application deployment. The design and

implementation of VButton follows this trend by requiring slight

modi�cation to existing OS input drivers, and installing VButton

manager as an independently trusted application in TEE; thus the

deployment e�ort is small.

Downgrade attack: Usually, a server will not enforce attesta-

tions for all the operations, since a user may not use VButton, or

may operate on another device (e.g., PC) without any attestation

mechanism. Thus, an attacker could install an old version of the

apps or claim that the mobile phone does not support TrustZone,

to force the server to downgrade to original mode and thus by-

pass the attestation mechanism. We suggest application develop-

ers use device binding to avoid downgrade attacks: once VButton

has been used in a device, any downgrade should be rejected or

treated as suspicious. To make it more practical, this mechanism is

con�gurable for each operation by users according to their di�er-

ent requirements. Further, the server can also adopt security poli-

cies to detect anomalies, e.g., if a lot of non-attested operations are

received in a relatively short period, they may be issued from a

smartphone farm.

Fooling the user: Although we try to minimize dependence on

the end user, VButton still relies on the user to check the preview. It

is still possible that an attack may bypass the attestation. One case

is that the preview has multiple pages and the user does not check

all the pages; another is that the preview content does not match

user’s intention but the user does not notice it. In the in-situ mode,

an attacker may fool the user by placing some unrelated context

near the button. In this case, we require the developers to ensure

that the in-situ button contains su�cient information. Otherwise,

it is more suitable to use the explicit attestationmode. Similarly, the

in-situ mode of VButton is not designed to defend against phish-

ing attacks intended to gain private data. For example, a malware

may fake a login page, and steal a user’s password. VButton cannot

handle such cases, and could be enhanced by other complementary

mechanisms like turning on a secure LED indicator when display-

ing a secure password-input UI.

Relay attack: Relay attack is issued by secretly replacing a

VButton-enabled app with a faked one with the same UI. Then

it uses a relay device with VButton enabled to talk to the server

by employing a real operator to touch the screen for each relay

11

request. For example, the user uses a faked VButton to follow Al-

ice, the faked app will send request to follow Eve, and use a relay

device to send attestation for following Eve. The key of this attack

is that the operation on a user’s device is decoupled with the at-

testation generated on the relay device. This kind of attack could

be defeated by device binding: a user needs to enroll the VButton

enabled device explicitly the �rst time she uses it, so that the attes-

tation generated by a relay device will not work.

No authentication: Authentication is not considered in our de-

sign, which means if a phone is left unlocked, an attacker may do

any operation on behavior of the owner, even if VButton is de-

ployed. Such attacks can be prevented by using existing mecha-

nisms like �ngerprint, iris checkings, or face detection.

Vulnerabilities of TEE: TEE can have bugs. If an attacker ex-

ploits some bug in TEE, and further steals the private key from

the TEE, she can then generate any attestation. Currently, VBut-

ton trusts the TEE and does not consider such an attack.

8 RELATEDWORK

User-driven security: There is a rich body of research on leverag-

ing user actions or intents to inform security detection or enforce-

ment systems. BINDER [18] was among the �rst to correlate user

interactions and security events for the purposes of detecting intru-

sions. NAB (Not-A-Bot) [23] is a system that defends against botnet

attacks on the server side by di�erentiating human-generated traf-

�c versus bot-generated tra�c. Jang et al. [25] proposed to block

malicious outgoing tra�c of (compromised) network applications

by permitting outgoing tra�c only when it is attributed to text-

based user input. More recently, researchers studied user-driven

access control as a means for operating systems to achieve dy-

namic and minimum granting of permissions [37, 38]. Aware [35]

is a newly proposed system that controls apps’ access to sensors

on Android. Based on a trusted OS, it binds apps’ sensor-access re-

quests to user input events and lets users authorize such requests.

In comparison, our work follows the same promising idea at the

high level—monitoring user interactions for detecting attacks. How-

ever, we apply this general idea to a new problem domain (i.e., re-

motely attesting client-side operations) and solve the unique tech-

nical challenges such as untrusted apps and untrusted OS, diverse

hardware speci�cations, and server-side attestation.

Remote attestation for mobile devices: Some previous works

have built special-purpose attestation tools for mobile or embed-

ded devices [13, 30, 31, 33]. Liu et al. [31] proposed software ab-

stractions for attesting data collected bymobile sensors. VeriUI [30]

focuses on protecting user login by verifying the integrity of the

login process to a remote server. C-FLAT [10] enables control-�ow

attestation on embedded devices. A common design choice among

these works, which we also follow, is using ARM TrustZone as

the client-side TCB for securely collecting or storing attestation

measurements. SchrodinText [13] is proposed to protect the out-

put process of con�dential text, including messages, veri�cation

codes, etc. It decouples the rendering and displaying of text, lever-

ages the Android OS to get layout of text without accessing the

data of the text but only the number of characters, and uses TEE

to reorder some pre-rendered glyphs to display the text. VButton

focuses on protecting the interaction between user and app, not

the con�dentiality of displayed data. AdAttester [29] is a system

for attesting the integrity of advertisement display on mobile de-

vices (i.e., checking if an ad banner has indeed being displayed as

is on a mobile device). Similar to AdAttester, VButton also uses

image-based matching as part of the attestation process. However,

our work goes beyond the “look” of a UI object, and has the ability

to understand and reconstruct the “meaning” of a UI object which

is more general and essential to verifying users’ intent and percep-

tion of a to-be-initiated action.

Securing ARM platformwith hardware features: Researchers

try to enhance system security with di�erent hardware features

on ARM platform like TrustZone and virtualization. Pocket hyper-

visor [16] proposes to use hypervisor for securing OS and various

services on mobile platform. YouProve [21] uses trusted hardware

to build the up-layer software stack for protecting the data of mo-

bile sensors. fTPM [36] proposes a TrustZone-based software im-

plementation of TPM-2.0 without a real TPM chip. Ditio [34] tries

to improve the security of IoT devices by recording sensor activity

logs with both TrustZone and virtualization support. vTZ [24] tar-

gets the ARM server platform and supports multiple secure worlds

for di�erent virtual machines. These works are orthogonal to our

work.

9 CONCLUSION

In this paper, we present a new system, named VButton, to en-

able a mobile service provider to reliably verify the authenticity

of user-driven operations originated from untrusted client devices.

Thanks to this new veri�cation capability, service providers can

now only accept user requests that are initialized and intended

by real users, consequently stopping user-impersonating or user-

deceiving malware. By leveraging ARM TrustZone, a widely avail-

able secure hardware feature on mobile devices, our system is not

a�ected by powerful malware or even a compromised/rooted OS.

Our design of the VButton UI and the two attestation modes makes

our system easy-to-use for developers, lightweight for app users,

and generic enough to support a wide range of operations.

We implemented our system in a suite of software tools for all

parties involved, including the developer SDK, the on-device mon-

itor called the Manager, and the Veri�er on the server side. We

used a development board and a commercial smartphone as our

hardware reference platforms. We evaluated the system in terms

of both security and performance. We found that the system is ro-

bust against powerful attacks, e�ective at detecting forged or un-

intended user operations, and lightweight in terms of its runtime

overhead.

ACKNOWLEDGMENTS

We thank our shepherd JeremyAndrus and the anonymous review-

ers for their insightful comments. This work was supported by the

National Key Research and Development Program of China under

Grant No. 2016YFB1000104, the National Natural Science Founda-

tion of China under Grant Nos. 61572314 and 61525204.

12

REFERENCES
[1] “Keeping facebook activity authentic,” https://www.facebook.com/notes/

facebook-security/keeping-facebook-activity-authentic/10152309368645766/,
2014.

[2] “Kingroot,” https://kingroot.net, 2016.
[3] “Authentication | android open source project,” https://source.android.com/

security/authentication/index.html, 2017.
[4] “boringssl,” https://boringssl.googlesource.com/boringssl/, 2017.
[5] “Chinese click farm where 10k phones boost app ratings,”

http://www.dailymail.co.uk/news/article-4499730/click-farm-10-000-phones-
boost-product-ratings.html, 2017.

[6] “Libtomcrypt,” https://github.com/libtom/libtomcrypt, 2017.
[7] “monkeyrunner,” https://developer.android.com/studio/test/monkeyrunner/,

2017.
[8] “textimagegenerator library,” https://github.com/jcraane/textimagegenerator,

2017.
[9] “Trustkernel tee,” https://www.trustkernel.com, 2018.
[10] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R. Sadeghi,

and G. Tsudik, “C-�at: control-�ow attestation for embedded systems software,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security. ACM, 2016, pp. 743–754.

[11] Alipay, “Ali pay,” https://www.alipay.com/, 2017.
[12] T. Alves and D. Felton, “Trustzone: Integrated hardware and software security,”

ARM white paper, vol. 3, no. 4, 2004.
[13] A. Amiri Sani, “Schrodintext: Strong protection of sensitive textual content of

mobile applications,” in Proceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services. ACM, 2017, pp. 197–210.

[14] Apple, “Apple pay,” www.apple.com/apple-pay/, 2017.
[15] ARM, “Connected devices need e-commerce standard security say

cyber security experts,” https://www.arm.com/about/newsroom/
connected-devices-need-e-commerce-standard-security-say-cyber-security-experts.
php, 2016.

[16] L. P. Cox and P. M. Chen, “Pocket hypervisors: Opportunities and challenges,” in
Mobile Computing Systems and Applications, 2007. HotMobile 2007. Eighth IEEE
Workshop on. IEEE, 2007, pp. 46–50.

[17] J. Crussell, R. Stevens, andH. Chen, “Madfraud: Investigating ad fraud in android
applications,” in Proceedings of the 12th annual international conference on Mobile
systems, applications, and services. ACM, 2014, pp. 123–134.

[18] W. Cui, R. H. Katz, and W.-t. Tan, “Binder: An extrusion-based break-in detector
for personal computers,” in USENIX Annual Technical Conference, General Track,
2005, pp. 363–366.

[19] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of mobile
malware in the wild,” in Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices. ACM, 2011, pp. 3–14.

[20] O. I. I. E. T. Force, “The open trust protocol (otrp),” https://tools.ietf .org/html/
draft-pei-opentrustprotocol-01, 2017.

[21] P. Gilbert, J. Jung, K. Lee, H. Qin, D. Sharkey, A. Sheth, and L. P. Cox, “Youprove:
authenticity and �delity in mobile sensing,” in Proceedings of the 9th ACM Con-
ference on Embedded Networked Sensor Systems. ACM, 2011, pp. 176–189.

[22] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet, “Multi-digit num-
ber recognition from street view imagery using deep convolutional neural net-
works,” arXiv preprint arXiv:1312.6082, 2013.

[23] R. Gummadi, H. Balakrishnan, P. Maniatis, and S. Ratnasamy, “Not-a-bot (nab):
Improving service availability in the face of botnet attacks,” 2009.

[24] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, “vtz: Virtualizing arm
trustzone,” in 26th {USENIX} Security Symposium ({USENIX} Security 17), 2017,
pp. 541–556.

[25] Y. Jang, S. P. Chung, B. D. Payne, and W. Lee, “Gyrus: A framework for user-
intent monitoring of text-based networked applications.” in NDSS, 2014.

[26] M. Jiang, P. Cui, and C. Faloutsos, “Suspicious behavior detection: Current trends
and future directions,” IEEE Intelligent Systems, vol. 31, no. 1, pp. 31–39, 2016.

[27] N. Krawetz, “Perceptual hash algorithm: the average hash algorithm,”
http://www.hackerfactor.com/blog/?/archives/432-Looks-Like-It.html, 2011.

[28] K. Lee, J. Caverlee, and S.Webb, “Uncovering social spammers: social honeypots+
machine learning,” in Proceedings of the 33rd international ACM SIGIR conference
on Research and development in information retrieval. ACM, 2010, pp. 435–442.

[29] W. Li, H. Li, H. Chen, and Y. Xia, “Adattester: Secure onlinemobile advertisement
attestation using trustzone,” in Proceedings of the 13th Annual International Con-
ference on Mobile Systems, Applications, and Services. ACM, 2015, pp. 75–88.

[30] D. Liu and L. P. Cox, “Veriui: Attested login for mobile devices,” in Proceedings of
the 15th Workshop on Mobile Computing Systems and Applications. ACM, 2014,
p. 7.

[31] H. Liu, S. Saroiu, A. Wolman, and H. Raj, “Software abstractions for trusted sen-
sors,” in Proceedings of the 10th international conference on Mobile systems, appli-
cations, and services. ACM, 2012, pp. 365–378.

[32] W. Liu, Y. Zhang, Z. Li, and H. Duan, “What you see isn’t always what you get:
A measurement study of usage fraud on android apps,” in Proceedings of the 6th
Workshop on Security and Privacy in Smartphones and Mobile Devices. ACM,
2016, pp. 23–32.

[33] C. Marforio, R. J. Masti, C. Soriente, K. Kostiainen, and S. Capkun, “Hardened
setup of personalized security indicators to counter phishing attacks in mobile
banking,” in Proceedings of the 6th Workshop on Security and Privacy in Smart-
phones and Mobile Devices. ACM, 2016, pp. 83–92.

[34] S. Mirzamohammadi, J. A. Chen, A. A. Sani, S. Mehrotra, and G. Tsudik, “Ditio:
Trustworthy auditing of sensor activities in mobile & iot devices,” in Proceedings
of the 15th ACM Conference on Embedded Network Sensor Systems. ACM, 2017,
p. 28.

[35] G. Petracca, A.-A. Reineh, Y. Sun, J. Grossklags, and T. Jaeger, “Aware:
Preventing abuse of privacy-sensitive sensors via operation bindings,” in 26th
USENIX Security Symposium (USENIX Security 17). Vancouver, BC: USENIX
Association, 2017, pp. 379–396. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/petracca

[36] H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England, C. Fenner, K. Kinshu-
mann, J. Loeser, D. Mattoon et al., “ftpm: A software-only implementation of a
tpm chip,” 2016.

[37] T. Ringer, D. Grossman, and F. Roesner, “Audacious: User-driven access control
with unmodi�ed operating systems,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2016, pp. 204–
216.

[38] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and C. Cowan, “User-
driven access control: Rethinking permission granting in modern operating sys-
tems,” in Security and privacy (SP), 2012 IEEE Symposium on. IEEE, 2012, pp.
224–238.

[39] S. Sivakorn, J. Polakis, and A. D. Keromytis, “I’m not a human: Breaking the
google recaptcha,” Black Hat,(i), pp. 1–12, 2016.

[40] T. Support, https://twitter.com/support/status/421400317524070402, 2016.
[41] Tecent, “Wechat pay,” https://pay.weixin.qq.com/index.php/public/wechatpay,

2017.

13

https://www.facebook.com/notes/facebook-security/keeping-facebook-activity-authentic/10152309368645766/
https://www.facebook.com/notes/facebook-security/keeping-facebook-activity-authentic/10152309368645766/
https://source.android.com/security/authentication/index.html
https://source.android.com/security/authentication/index.html
https://boringssl.googlesource.com/boringssl/
https://github.com/libtom/libtomcrypt
https://developer.android.com/studio/test/monkeyrunner/
https://github.com/jcraane/textimagegenerator
https://www.trustkernel.com
https://www.alipay.com/
www.apple.com/apple-pay/
https://www.arm.com/about/newsroom/connected-devices-need-e-commerce-standard-security-say-cyber-security-experts.php
https://www.arm.com/about/newsroom/connected-devices-need-e-commerce-standard-security-say-cyber-security-experts.php
https://www.arm.com/about/newsroom/connected-devices-need-e-commerce-standard-security-say-cyber-security-experts.php
https://tools.ietf.org/html/draft-pei-opentrustprotocol-01
https://tools.ietf.org/html/draft-pei-opentrustprotocol-01
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/petracca
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/petracca
https://twitter.com/support/status/421400317524070402
https://pay.weixin.qq.com/index.php/public/wechatpay

	Abstract
	1 Introduction
	2 Motivation and Threat Model
	2.1 Motivation
	2.2 Background: ARM TrustZone
	2.3 Threat Model

	3 Design
	3.1 Overview and Challenges
	3.2 Mode-1: Explicit Attestation
	3.3 Mode-2: In-situ Attestation
	3.4 VButton API

	4 Implementation
	4.1 Key Management and Attestation Service
	4.2 Secure Display
	4.3 Secure Input

	5 Security Evaluation
	5.1 Input Injection Attack
	5.2 Display Overlay Attack
	5.3 Implementation Complexity and TCB Size

	6 Performance Evaluation
	6.1 API Performance Microbenchmarks
	6.2 Input Handling Latency
	6.3 Server-side Attestation Performance
	6.4 Power Consumption
	6.5 Case Study: Facebook Like & Share Button

	7 Discussion & Limitation
	8 Related Work
	9 Conclusion
	References

