
17September 2018 | Volume 22, Issue 3 GetMobile

[MOBILE PLATFORMS]

Wenhao Li, Yubin Xia, Haibo Chen Shaghai Jiao Tong University

Editor: Ardalan Amiri Sani

RESEARCH ON
ARM TRUSTZONE
ARM TrustZone [1] is a hardware-based security feature that can provide software with a high-privilege and
isolated execution environment. Such isolation is ensured by hardware, which is usually considered as more
trustworthy than software. Thus the execution environment is also known as trusted execution environment
(TEE). TrustZone technology was proposed in 2002, but did not get widely used until 2009, when Apple
released iPhone 5s. In iPhone 5s, Apple leveraged TrustZone to protect its Touch ID, which ensures that
even if the iOS is fully compromised, the user's fingerprint data can still be safe. In 2017, Google made TEE
a mandatory requirement on any Android devices with a fingerprint scanner. Nowadays, almost all mobile
phones and tablets have TEE deployed. Meanwhile, ARM integrates TrustZone in ARM64 and ARMv8-M
to support a broader range of platforms including servers and IoT devices.Ill

us
tr

at
io

n,
 is

to
ck

ph
ot

o.
co

m

GetMobile September 2018 | Volume 22, Issue 318

T he architectural features provided
by TrustZone are attractive to re-
searchers. Many researchers try to
answer this question: “What is the
right way to use TrustZone?” and

propose many systems to explore different
usages. There are many challenges: first, the
system should be easy to use. Some research-
ers propose integrating TrustZone with the
existing system for minimal intrusion to
users. Second, the code added to the secure
world should be as little as possible. The func-
tionalities offered by TEE should be general to
keep a small trusted computing base (TCB).
Third, the system should be deployable, which
should not require significant modifications
to existing systems software or applications.
There are also several other challenges like
extensibility, attack surface, performance, etc.,
which will be addressed later.

HARDWARE AND SOFTWARE
ARM TrustZone [1] has been proposed
since ARMv6 architecture, which includes
security extensions to ARM System-On-Chip
(SoC) covering the processor, memory and
peripherals. For the processor, TrustZone
splits it into two execution environments, a
normal world and a secure world (as shown
in Figure 1). Both worlds have their own user
space and kernel space, together with cache,
memory and other resources.

The normal world cannot access the
secure world’s resources while the latter
can access all the resources. Base on this

asymmetrical permission, the normal world
is used to run a commodity OS, which
provides a Rich Execution Environment
(REE). Meanwhile, the secure world
always uses a secure small kernel (TEE-
kernel). The two worlds can switch to
each other under the strict supervision
of a Secure Monitor running in monitor
mode. Typically, a special instruction called
“secure monitor call” (smc) is used for
worlds switching.

Memory Partitioning: TrustZone divides
the memory into two parts: normal part
and secure part, which are distributed into
normal world and secure world accordingly.
Again, TrustZone ensures that the normal
world cannot access the secure part of
memory while the secure world can access
the entire memory. With this feature, two
worlds can communicate with each other
by using a piece of shared memory. Besides,
the memory partition can be dynamically
controlled by the secure world, which gives
secure services running in the secure world
the ability to dynamically protect certain
parts of the memory.

Peripheral Partitioning: For I/O devices
and interrupts, TrustZone also splits them
into two worlds. An I/O device can be
assigned to one specific world. TrustZone
ensures that the normal world cannot
access the secure world’s I/O devices
while the secure world can control the

whole system’s devices. For each interrupt,
TrustZone can designate the world to
handle it. When a secure interrupt arrives,
TrustZone will switch the processor to
the secure world to handle it. Similar to
memory, the partitioning of I/O devices
and interrupts can be dynamically
configured by the secure world.

Secure Boot: The TEE kernel leverages
secure boot to enforce its own integrity.
Once a phone is booting, the processor
will first enter the secure world and load a
TEE image to memory. It then checks the
signature of the loaded image to ensure the
TEE image has been correctly signed by
legal authority (typically the phone vendor).
If the check fails, the hardware will stop
and hang. The check is done at the very
beginning of booting process and cannot
be bypassed. After initialization, the
security is enforced by the TEE software.

ARCHITECTURAL FEATURES
TrustZone offers several interesting
architecture features, which makes it
ideal for system security. First, the TEE
is isolated from REE, which allows for
providing security guarantees without
trusting the complex REE OS like Android.
Confidential data can be stored and
accessed in TEE and can be protected even
if malware has taken full control of the
REE, like jailbreaking on iOS or rooting
on Android.

Second, the TEE has higher privilege
than REE, which enables it to monitor
and check the REE’s running status, like
scanning all the REE memory for intrusion
detection, integrity enforcement and so on.
One challenge is the semantic gap between
TEE and REE since TEE can only access the
raw memory data without any semantic of
the data. The problem is similar as in VMI
(VM introspection) and can be mitigated
by cooperation between TEE and REE.

Third, TEE can control all the
peripherals. Unlike TEE on other platforms
like Intel SGX, which focuses on protecting
application, TrustZone is a full-system
feature that can host both user and system
logic, and can control peripheral partition
dynamically. This makes it a very good way
to protect the I/O path from device to the
user, by partitioning both the input and
output devices to the secure world.

[MOBILE PLATFORMS]

FIGURE 1. The architecture of ARM TrustZone.

19September 2018 | Volume 22, Issue 3 GetMobile

RESEARCH ON TRUSTZONE
The features of TrustZone offer new
opportunities for enhancing security of
systems based on ARM platform, including
mobile phones, cloud servers, IoT devices,
etc. Currently most of the related researches
are on the mobile phone platform, while
there are also new work targeting servers
and IoT platforms.

App-Layer: Data Protection
At the very beginning, the typical usage of
TrustZone was to host some fixed function-
alities, such as biometric authentication, one-
time-password, encryption functions, secure
storage, etc., which are provided as general
secure services of the system. An app in the
normal world can invoke these functional-
ities through API, but cannot install custom-
ized logic into the secure world.

TLR (Trusted Language Runtime)[2]
enables developers to separate an app's
security-sensitive logic from the rest so
that it can be isolated in the secure world.
It splits the logic of .NET runtime to two
parts, one in the normal world and the
other in the secure world, and provides four
new primitives for developers to use to store
and access secret data. The TCB of TLR is
78 times smaller than Mono, an open source
.NET runtime. The framework can also be
applied to Java runtime.

Rubinov et al. [3] further proposes an
approach for automated partitioning of
critical Android apps. Specifically, an app
is divided to a client code running in the
normal world and a TEE commands the
part containing the handling of confidential
data running in the secure world. It requires
the developers to identify the confidential
data, and leverages static analysis to extract
all the code paths that will access the data,
which will further be converted to native
code manually.

The challenge of partitioning the app
is to define a clear and secure interface
between the TEE and REE. First, the code
running in the secure world should not
depend on the correctness of the code in the
normal world. However, such dependency
may be app-specific and currently there is
no system way to analyze such dependency.
Second, an inappropriate interface may
increase the opportunities of side channel
attacks. For example, consider function-A
which maintains a counter. Each time

it is invoked it will increase the counter.
Assume that the counter is confidential and
function-A should be partitioned and run
in the secure world. However, an attacker
can easily get the counter just by counting
the invoking times of the function-A from
the normal world. It should be noted that
data-driven code partition mechanisms
may expose more inner states to the normal
world, which increases the attacking surface.

TrustShadow [4] allows an unmodified
user application to run in the secure world
to isolate the application from the untrusted
REE kernel. The TEE kernel does not
handle the system calls from the protected
application. Instead, it redirects all the
system calls to the REE kernel to handle.
TrustShadow does not need to consider
the partition of app logic and the attack
surface now is system calls.

Framework-Layer: UI Protection
Since both the input and display devices
can be partitioned to the secure world,
it is possible to use TrustZone to protect
the process of user input and output, for
both privacy and integrity, which is also
known as Trust-UI [5]. Trust-UI has an
independent UI framework and allows
TA direct contact with the user without
REE's involvement.

VeriUI [6] proposes a TrustZone based
login mechanism to protect the process of
password input and transmission. During
login, a user only interacts with a browser
running in the secure world, which will
get user's input and send the password
to server. After login, a CA can retrieve
an OAuth token from the secure world
and use the token for further process. The
system focuses on protecting the password
to defend against attacks like phishing,
malware, or even malicious REE OS.
Similarly, TruZ-Droid [7] splits the HTTP
and SSL protocols and deploys only half
part of the two protocols in the secure

world to further reduce the TCB size.
On the contrary, SchrodinText [8] is

proposed to protect the output process of
text, and extends the range of protection to
more types of text fields, including messages,
verification codes, etc. It decouples the
rendering and displaying of text, leverages
the REE OS to render some text without
accessing the data of the text but only the
number of characters, and uses the TEE to
reorder pre-rendered text glyph to display.
Thus the untrusted OS will never access
the data of text.

Besides protecting the text widget,
researchers also use TrustZone to protect
other UI widgets like ad and button.
AdAttester [9] aims to defend against
ad fraud by providing two primitives,
unforgeable clicks and verifiable display,
with TrustZone. It enables a mobile phone
to generate attestations for ad display as
well as ad clicks (press). The attestations
are further checked by the ad server to
ensure the integrity of display and user
action authenticity. VButton [10] extends
the idea to further support attestation on
any press operation by combining a preview
to a button widget. The preview contains
the semantic of user’s operation, which is
shown to the user to confirm, and will then
generate an attestation by TEE. To simplify
the processing in the TEE, a preview
is generated by the server before being
transferred and displayed in the TEE on a
mobile phone.

One important question of secure UI
is “How can the user tell whether she is
interacting with the secure UI or a fake
UI?” One simple but effective way is to
introduce an LED indicator controlled
exclusively by the TEE OS, which only
turns on if the secure UI is working. An
alternative way that uses software only
would be using a user-chosen picture as the
indicator, which is easier to deploy but the
initialization of the picture should be taken

[MOBILE PLATFORMS]

AS ARM’S ECOSYSTEM IS EXPANDING
FROM MOBILE DEVICES TO IOT,
VEHICLES, AND SERVERS, SECURITY IS
BECOMING INDISPENSABLE IN MORE
AND MORE SCENARIOS

GetMobile September 2018 | Volume 22, Issue 320

[MOBILE PLATFORMS]

have to share the only secure world.
vTZ [19] tries to solve this problem by
virtualizing TrustZone to offer each VM an
isolated secure world. With vTZ, software
in a VM can use SMC instruction to switch
between REE and a virtual TEE, just as it
does in a non-virtualized environment, and
all the features of TrustZone are reserved
after virtualization. The implementation
requires an REE hypervisor but does not
need to trust it.

CHALLENGES
TEE Vulnerabilities
Systems using TrustZone for security rely
on one important assumption: the TEE
itself is trusted. This assumption came
from the fact that less code has fewer bugs.
Unfortunately, like most software, the
TEE OS and applications can also have
vulnerabilities. Back in 2013, it was found
that the bootloader of certain Motorola
phones can be unlocked to load any system,
which is known as CVE-2013-3051.
CVE-2016-0825 reveals a vulnerability of
the Widevine1 TA (trusted application)
that may leverage TEE kernel to get and
leak data stored in TEE’s secure storage.
Attackers may even use TEE to attack
the REE. For example, Boomerang attack
[20] leverages bugs of privileged TEE
applications to compromise the REE kernel.

How to enforce the security of TEE?
The industry is looking for various ways,
including stronger isolation, bug finding,
formal verification etc., to isolate, find or
even eliminate bugs of TEE. For stronger
isolation, one important problem to solve
is to minimize the attack surface of TEE by
authenticating the requests from REE. For
example, by enforcing a policy that only
one app is allowed to communicate with a
certain TA, even if the TA has some bugs,
it is hard to trigger since it only accepts
requests from one legal app.

Another consideration of TEE security
is the update process. An attacker may
insert malicious logic to TEE images
to be updated, thus the integrity of the
images must be checked before applying.
Downgrade attack is performed to rollback
TEE to some earlier version that is known
to contain certain vulnerabilities for further
exploitation. Thus, it should be ensured that

Liu et al. [15] proposed two software
abstractions, named sensor-attestation and
sensor-seal, for exposing trusted sensors
to mobile applications and cloud services.
The attestation can be very useful especially
for crowdsourcing applications, where
applications upload sensor readings to
a cloud, which combines these values to
do further analysis. Here, the integrity of
the readings can be critical as, otherwise,
attackers may upload incorrect or even
malicious data to the cloud.

TrustZone can also be used to
implement some hardware features. For
example, fTPM [16] uses TrustZone
to implement TPM 2.0 interface. TPM
(Trusted Platform Module) is a widely
deployed chip on PCs and laptops as a key
enabler of applications like digital rights
management. fTPM enables mobile phones
to support TPM by pure software, which
is backwards compatible and has better
performance than a hardware TPM chip.

Other Platforms: IoT, Drone, Cloud
Besides mobile phones, there are many
new types of smart devices, such as smart
home assistants, wall-mounted cameras,
wearable devices, etc. These devices usually
have plenty of sensors, notably cameras
and microphones, which collect security
sensitive information that should be
protected.

Ditio [17] tries to improve the security of
IoT devices by recording sensor activity logs
with TrustZone and virtualization support.
All the access to registers of sensors can
be recorded without modification to the
REE OS, which will generate a complete
log of sensor activities, which will be later
be inspected by an auditor and checked for
compliance with a given policy. Ditio also
provides a tool to ease the process of log
analyzing.

PROTC [18] leverages TrustZone on the
Drone platform to protect the peripherals.
It deploys a monitor in the secure world
to enforce secure access control policy for
some peripherals of the drone to ensure
that only authorized applications can access
certain peripherals.

ARM servers are getting popular in
cloud computing, which also support
virtualization. Currently TrustZone can
only provide one secure world, which
means that multiple VMs on one server

special care of. Meanwhile, a system also
needs to consider the case that an REE OS
overlays the display, which can be avoided
by letting TEE exclusively control the
framebuffer.

OS-Layer: Kernel Protection
SPROBES [11] uses TrustZone to check
the code integrity of REE kernel. By
instrumenting the REE kernel, a monitor
running in the secure world can be notified
and perform security checks. TZ-RKP [12]
deprives the REE kernel from the ability of
several privileged system functions (e.g.,
operating the MMU) by removing all the
privileged instructions, puts these functions
in the secure world, and forces the REE
kernel to invoke services provided by a
monitor in the secure world to do such
privileged operations. Thus the monitor gets
a chance to interposition these operations
and do security check during runtime,
instead of checking periodically.

Similarly, PrivateZone [13] leverages
TrustZone to exclusively control the MMU
and create PrEE, a memory address space
isolated from both REE and TEE in the
normal world that can run logic in either
user or kernel mode. Since the TCB of PrEE
is in TrustZone, it allows developers to create
their own isolated execution environment
without running app-specific logic in the
secure world to keep the TCB small.

Hardware-Layer:
Peripheral Protection
Since TrustZone can take exclusive control
over peripherals, some researchers leverage
it to control these hardware devices with
minimal TCB or apply mandatory access
control [14]. For example, in scenarios such
as a private meeting or a battlefield, it is
critical to ensure that certain peripheral (i.e.,
microphone or radios) are disabled. Instead
of turning off the entire mobile device, using
TrustZone to turn on/off peripheral could be
more flexible. There are two ways to operate
the control: one is to set policies by local
users through protected UI. The other way
is to distribute policies through a remote
server, which connects with application in
the secure world directly by secure channel.

Another way to use TrustZone is
to combine it with sensors on mobile
platforms like GPS, to protect the value
read from the sensors. Based on TrustZone, 1 https://www.widevine.com

21September 2018 | Volume 22, Issue 3 GetMobile

[MOBILE PLATFORMS]

the update process of TEE is monotonic.
Besides TEE vulnerabilities, side channel

and physical attack can also be serious
threats to the secret data in the secure
world, like ARMageddon [21] and cold-
boot attack (e.g., Frozen) [22]. Most of the
research mentioned do not consider such
attacks. Sentry [23] and CaSE [24] propose
using SoC storage, e.g., internal SRAM or
L2 cache, instead of DRAM to store secret
data like private keys to defend against
physical attacks. To host data larger than the
capacity of SoC storage, these systems use
encrypted swapping to swap encrypted data
out to/in from untrusted DRAM.

Ecosystem: Openness VS. Security
Currently, the ecosystem of TEE is still
not open, which means that all the TAs
are controlled by the vendors and are
pre-installed on devices before selling. In
order to enable REE applications to better
leverage TrustZone, it should be allowed
to install TAs dynamically. Some TEE
products already offer TA management as
a service using cloud, e.g., MyTAM [25],
which enables an application to request the
phone to download a customized TA and
deploy it in the TEE. The phone will verify
the signature of the downloaded TA before
installation. However, it also brings new
security challenges to the TEE since now
the attacking surface of TEE is larger.

Remote attestation is also an important
feature of TEE. A mobile phone can be
remotely attested to determine whether
it has deployed a valid TEE. The phone
manufacturers will embed a private key in

each TEE before selling the devices. The
public keys are usually managed by the
vendors. Recently, ARM has established
Open Trust Protocol (OTrP) alliance [26],
which is building a certificate authority-
based trust architecture to further ease the
process of attestation of trusted applications.

For every TEE-equipped device, a
per-device key pair and a unique device
ID will be generated and securely saved in
the secure storage of the device. It is stored
either in the efuse or the eMMC partition
with RPMB (Replay-Protected Memory
Block) in a controlled environment (e.g.,
on the production line of device factory)
before shipping to the market. The public
key of the device and the device ID are
uploaded to the backend server in the
production line for future device attestation.
The efuse storage is relatively expensive and
the available space is usually very small.
The RPMB partition in the eMMC, on the
other hand, contains several megabytes for
storing data in an authenticated and replay-
protected manner.

PLATFORMS FOR RESEARCHING
Currently, although almost all of ARM
application processors support TrustZone,
and billions of mobile phones on the
market have deployed TEE, most of them
are not available for research, either due
to lack of documentation and firmware
support, or due to being close with secure
boot. Still, there are several hardware and
software platforms available for research.
Hardware platforms that could be easily
used by researchers include Samsung

Exynos 4412, Freescale i.MX6/i.MX53,
HiKey 960, ARM Juno Versatile Express
development board and Raspberry Pi 2.
Open source TEE, which is still actively
maintained, includes Linaro OP-TEE
and Google Trusty. Note that although
TrustZone architecture is proposed by
ARM, many SoCs provide customized
protection mechanisms on memory and
peripheral. Samsung Exynos 4412, Freescale
i.MX6/i.MX53 and Raspberry Pi 2 are
suitable for IoT and low-end mobile device.
ARM Juno Versatile Express development
board is recommended by ARM targeting at
ARMv8 software prototyping with a flexible
hardware expansion. Both HiKey 960 and
ARM Juno Versatile Express development
board are good alternatives for TrustZone
and hardware virtualization research.

CONCLUSION
As ARM’s ecosystem is expanding from
mobile devices to IoT, vehicles, and servers,
security is becoming indispensable in more
and more scenarios. TrustZone and TEE
provide a key-enabling technology for
protecting, monitoring and isolating various
up-layer applications, which will play a
more important role on multiple platforms
in the near future. There is a trend that
the code running in the secure world is
increasing. Fine-grained isolation within
the TEE will be essential. It is also critical to
enforce the correctness of TEE’s design as
well as its implementation by technologies
like formal verification. Meanwhile, the
management and deployment of TA should
also be much more strict. n

Hardware Hardware Documentation Open source Remarks
Platform Features TEE supported

Samsung Cortex-A9 Sufficient N.A. Typical 32bit ARM platform
Exynos4412 (NDA needed) for mobile device.

Freescale Cortex-A9 Sufficient OP-TEE Typical 32bit ARM platform for
i.MX6/i.MX53 IoT device, such as an automobile.

HiKey 960 Cortex- Sufficient OP-TEE Typical 64bit ARM platform with
 A73/A53 hardware virtualization support.

Arm Juno Cortex- Sufficient OP-TEE/Trusty Typical 64bit ARM platform with
Versatile A53/A72 hardware virtualization support
Express provided by ARM.

Raspberry Pi2 Cortex-A7 Lack of enough OP-TEE Typical 32bit ARM platform
 feature description for IoT device.

TABLE 1. Available Research Platforms for TrustZone

GetMobile September 2018 | Volume 22, Issue 322

[MOBILE PLATFORMS]

Wenhao Li is a PhD candidate at Shanghai
Jiao Tong University. He received his master’s
degree from the same university. His
research interests include system and mobile
security. His research focuses on leveraging
new hardware features to improve the
dependability and security of systems, building
and optimizing high performance platforms
that benefit from system security.

Yubin Xia is an associate professor at
Shanghai Jiao Tong University. His research
interests include operating systems, system

virtualization, and computer architecture.
Currently, he is focusing on building a new system
software suitable for isolation in new execution
environments, like TEE, VM, enclave, etc.

Haibo Chen has been a full professor at
Shanghai Jiao Tong University since 2011.
He received a bachelor’s degree and a PhD in
Computer Science, both from Fudan University.
He currently leads the Institute of Parallel and
Distributed Systems, and works with members
to improve the performance and dependability
of computer systems.

REFERENCES
[1] Tiago Alves and Don Felton. 2004. TrustZone:

Integrated hardware and software security. ARM
white paper 3, 4 (2004), 18–24.

[2] Nuno Santos, Himanshu Raj, Stefan Saroiu, and
Alec Wolman. 2014. “Using ARM TrustZone
to build a trusted language runtime for mobile
applications.” In ASPLOS. ACM, 67–80.

[3] Konstantin Rubinov, Lucia Rosculete, Tulika
Mitra, and Abhik Roy Choudhury. “Automated
partitioning of android applications for trusted
execution environments.” In ICSE. 2016.

[4] Guan, Le, et al. “TrustShadow: Secure execution
of unmodified applications with ARM trustzone.”
Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and
Services. ACM, 2017.

[5] Li, Wenhao, et al. “Building trusted path on
untrusted device drivers for mobile devices.”
Proceedings of 5th Asia-Pacific Workshop on Systems.
ACM, 2014.

[6] D. Liu and L. P. Cox, “Veriui: Attested login for
mobile devices,” in Proceedings of the 15th Workshop
on Mobile Computing Systems and Applications.
ACM, 2014.

[7] Kailiang Ying, et at. TruZ-Droid: “Integrating
TrustZone with Mobile Operating System.”
MobiSys, 2018.

[8] A. Amiri Sani, “Schrodintext: Strong protection
of sensitive textual content of mobile applications,”
in Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and
Services. ACM, 2017, pp. 197–210.

[9] W. Li, H. Li, H. Chen, and Y. Xia, “Adattester:
Secure online mobile advertisement attestation
using trustzone,” in MobiSys, 2015.

[10] Wenhao Li, Shiyu Luo, Zhichuang Sun, Yubin
Xia, Long Lu, Haibo Chen, Binyu Zang, Haibing
Guan. “VButton: Practical Attestation of User-
driven Operations in Mobile Apps.” MobiSys, 2018.

[11] Xinyang Ge, Hayawardh Vijayakumar, and Trent
Jaeger. Sprobes: “Enforcing kernel code integrity on
the trustzone architecture.” MOST, 2014.

[12] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan
Chen, Rohan Bhutkar, Guruprasad Ganesh, Jia Ma,
and Wenbo Shen. “Hypervision across Worlds:
Real-time kernel protection from the ARM
TrustZone Secure World.” CCS, 2012.

[13] Jang, Jinsoo, et al. PrivateZone: Providing a
Private Execution Environment using ARM
trustzone.” IEEE Transactions on Dependable and
Secure Computing, 2016.

[14] Brasser, Ferdinand, et al. “Regulating arm
trustzone devices in restricted spaces.” Proceedings of
the 14th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 2016.

[15] Liu, He, et al. “Software abstractions for trusted
sensors.” Proceedings of the 10th international
conference on Mobile systems, applications, and
services. ACM, 2012.

[16] Raj, Himanshu, et al. fTPM: “A software-only
implementation of a TPM chip.” USENIX Security
Symposium. 2016.

[17] S. Mirzamohammadi, J. A. Chen, A. Amiri Sani,
S. Mehrotra, and G. Tsudik, “Ditio: Trustworthy
auditing of sensor activities in mobile &
IoT devices.” In Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems.
ACM, 2017.

[18] Liu, Renju, and Mani Srivastava. “PROTC:
PROTeCting drone's peripherals through ARM
trustzone.” Proceedings of the 3rd Workshop on
Micro Aerial Vehicle Networks, Systems, and
Applications. ACM, 2017.

[19] Zhichao Hua, Jinyu Gu, Yubin Xia, Haibo Chen,
Binyu Zang and Haibing Guan. vTZ: “Virtualizing
ARM trustzone.” Usenix Security Symposium,
2017.

[20] Aravind Machiry, Eric Gustafson, Chad Spensky,
Chris Salls, Nick Stephens, Ruoyu Wang, Antonio
Bianchi, Yung Ryn Choe, Christopher Kruegel, and
Giovanni Vigna. “BOOMERANG: Exploiting the
semantic gap in trusted execution environments.”
NDSS, 2017.

[21] Lipp, Moritz, et al. “ARMageddon: Cache attacks
on mobile devices.” USENIX Security Symposium,
2016.

[22] Halderman, J. Alex, et al. “Lest we remember:
cold-boot attacks on encryption keys.”
Communications of the ACM, 2009.

[23] Colp, Patrick, et al. “Protecting data on
smartphones and tablets from memory attacks.”
ASPLOS, 2015.

[24] Zhang, Ning, et al. “Case: Cache-assisted secure
execution on arm processors.” Security and Privacy
(SP), 2016.

[25] Intercede Inc. MyTAM, https://www.intercede.
com/news/intercedes-mytam-enables-enhanced-
trust-for-android-apps-to-protect-against-hackers-
and-malware.

[26] ARM Inc. OTrP, https://www.electronicsweekly.
com/news/arm-aims-to-build-trust-in-iot-
security-2016-07.

